Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How evolution tells us to induce allotolerance.

Identifieur interne : 000177 ( Main/Exploration ); précédent : 000176; suivant : 000178

How evolution tells us to induce allotolerance.

Auteurs : Walter Gottlieb Land [France]

Source :

RBID : pubmed:25894127

Descripteurs français

English descriptors

Abstract

Modern immunology, in many ways, is based on 3 major paradigms: the clonal selection theory (Medawar, Burnet; 1953/1959), the pattern recognition theory (Janeway; 1989), and the danger/injury theory (Matzinger, Land; 1994). The last theory holds that any cell stress and tissue injury including allograft injury, via induction of damage-associated molecular patterns, induces immunity including alloimmunity leading to allograft rejection. On the other hand, the concept precludes that "non-self " per se induces immunity as proposed by the two former theories. Today, the danger/injury model has been largely accepted by immunologists, as documented by a steadily increasing number of publications. In particular, overwhelming evidence in support of the correctness of the model has come from recent studies on the gut microbiota representing a huge assemblage of "non-self. " Here, harmless noninjurious commensal microbes are protected by innate immunity-based immune tolerance whereas intestinal injury-causing pathogenic microbes are immunology attacked. The ability of the immune system to discriminate between harmless beneficial "non-self " to induce tolerance and harmful life-threatening "non-self " to induce immunity has apparently emerged during evolution: Protection of innate immunity-controlled beneficial "non-self " (eg, as reflected by microbiotas but also by the fetus of placental mammals) as well as immune defense responses to injuring/injured "non-self " (eg, as reflected by plant resistance to biotic and abiotic stress and allograft rejection in mammals) evolved under pressure across the tree of life, that is, in plants, lower and higher invertebrates as well as lower and higher vertebrates. And evolution tells us why the overall existence of protected microbiotas really makes sense: It is the formation of the "holobiont, " - a metaorganism - that is, the host plus all of its associated microorganisms that - in terms of a strong unit of selection in evolution - provides that kind of fitness to all species on earth to successfully live, survive and reproduce. In other words: "We all evolve, develop, grow, and reproduce as multigenomic ecosystems! Regarding reproduction, another impressive example of active immunologic protection of "nonself " refers to pregnancy in placental mammals that emerged about 400 millions of years ago. Similar to "non-self " microbiotas, pregnancy in placental mammals reflects an evolution-driven phenomenon on the basis of innate immunity-controlled tolerance induction to semiallogeneic non-injuring/non-injured "non-self " aiming to ensure reproduction! Altogether, the lesson learned from evolution of how to avoid allograft rejection is clear: prevent allograft injury to induce allotolerance, in other words: create a "transplant holobiont. ".

PubMed: 25894127


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How evolution tells us to induce allotolerance.</title>
<author>
<name sortKey="Land, Walter Gottlieb" sort="Land, Walter Gottlieb" uniqKey="Land W" first="Walter Gottlieb" last="Land">Walter Gottlieb Land</name>
<affiliation wicri:level="3">
<nlm:affiliation>From Molecular ImmunoRheumatology, INSERM, UMR S 1109, LabEx Transplantex, Faculty of Medicine, University of Strasbourg, Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>From Molecular ImmunoRheumatology, INSERM, UMR S 1109, LabEx Transplantex, Faculty of Medicine, University of Strasbourg, Strasbourg</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Alsace (région administrative)</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25894127</idno>
<idno type="pmid">25894127</idno>
<idno type="wicri:Area/Main/Corpus">000180</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000180</idno>
<idno type="wicri:Area/Main/Curation">000180</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000180</idno>
<idno type="wicri:Area/Main/Exploration">000180</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How evolution tells us to induce allotolerance.</title>
<author>
<name sortKey="Land, Walter Gottlieb" sort="Land, Walter Gottlieb" uniqKey="Land W" first="Walter Gottlieb" last="Land">Walter Gottlieb Land</name>
<affiliation wicri:level="3">
<nlm:affiliation>From Molecular ImmunoRheumatology, INSERM, UMR S 1109, LabEx Transplantex, Faculty of Medicine, University of Strasbourg, Strasbourg, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>From Molecular ImmunoRheumatology, INSERM, UMR S 1109, LabEx Transplantex, Faculty of Medicine, University of Strasbourg, Strasbourg</wicri:regionArea>
<placeName>
<region type="region">Grand Est</region>
<region type="old region">Alsace (région administrative)</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation</title>
<idno type="eISSN">2146-8427</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Bacteria (immunology)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Female (MeSH)</term>
<term>Graft Rejection (immunology)</term>
<term>Graft Rejection (metabolism)</term>
<term>Graft Rejection (prevention & control)</term>
<term>Graft Survival (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Immunity, Mucosal (MeSH)</term>
<term>Intestines (immunology)</term>
<term>Intestines (microbiology)</term>
<term>Models, Immunological (MeSH)</term>
<term>Organ Transplantation (adverse effects)</term>
<term>Placenta (immunology)</term>
<term>Pregnancy (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transplantation Tolerance (MeSH)</term>
<term>Treatment Outcome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bactéries (immunologie)</term>
<term>Femelle (MeSH)</term>
<term>Grossesse (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Immunité innée (MeSH)</term>
<term>Immunité muqueuse (MeSH)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Intestins (immunologie)</term>
<term>Intestins (microbiologie)</term>
<term>Modèles immunologiques (MeSH)</term>
<term>Placenta (immunologie)</term>
<term>Rejet du greffon (immunologie)</term>
<term>Rejet du greffon (métabolisme)</term>
<term>Rejet du greffon (prévention et contrôle)</term>
<term>Résultat thérapeutique (MeSH)</term>
<term>Survie du greffon (MeSH)</term>
<term>Tolérance à la transplantation (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transplantation d'organe (effets indésirables)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="adverse effects" xml:lang="en">
<term>Organ Transplantation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets indésirables" xml:lang="fr">
<term>Transplantation d'organe</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Bactéries</term>
<term>Intestins</term>
<term>Placenta</term>
<term>Rejet du greffon</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Bacteria</term>
<term>Graft Rejection</term>
<term>Intestines</term>
<term>Placenta</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Graft Rejection</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Intestins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Intestines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Rejet du greffon</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Graft Rejection</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Rejet du greffon</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Evolution, Molecular</term>
<term>Female</term>
<term>Graft Survival</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Immunity, Mucosal</term>
<term>Models, Immunological</term>
<term>Pregnancy</term>
<term>Signal Transduction</term>
<term>Transplantation Tolerance</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Grossesse</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Immunité muqueuse</term>
<term>Interactions hôte-pathogène</term>
<term>Modèles immunologiques</term>
<term>Résultat thérapeutique</term>
<term>Survie du greffon</term>
<term>Tolérance à la transplantation</term>
<term>Transduction du signal</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Modern immunology, in many ways, is based on 3 major paradigms: the clonal selection theory (Medawar, Burnet; 1953/1959), the pattern recognition theory (Janeway; 1989), and the danger/injury theory (Matzinger, Land; 1994). The last theory holds that any cell stress and tissue injury including allograft injury, via induction of damage-associated molecular patterns, induces immunity including alloimmunity leading to allograft rejection. On the other hand, the concept precludes that "non-self " per se induces immunity as proposed by the two former theories. Today, the danger/injury model has been largely accepted by immunologists, as documented by a steadily increasing number of publications. In particular, overwhelming evidence in support of the correctness of the model has come from recent studies on the gut microbiota representing a huge assemblage of "non-self. " Here, harmless noninjurious commensal microbes are protected by innate immunity-based immune tolerance whereas intestinal injury-causing pathogenic microbes are immunology attacked. The ability of the immune system to discriminate between harmless beneficial "non-self " to induce tolerance and harmful life-threatening "non-self " to induce immunity has apparently emerged during evolution: Protection of innate immunity-controlled beneficial "non-self " (eg, as reflected by microbiotas but also by the fetus of placental mammals) as well as immune defense responses to injuring/injured "non-self " (eg, as reflected by plant resistance to biotic and abiotic stress and allograft rejection in mammals) evolved under pressure across the tree of life, that is, in plants, lower and higher invertebrates as well as lower and higher vertebrates. And evolution tells us why the overall existence of protected microbiotas really makes sense: It is the formation of the "holobiont, " - a metaorganism - that is, the host plus all of its associated microorganisms that - in terms of a strong unit of selection in evolution - provides that kind of fitness to all species on earth to successfully live, survive and reproduce. In other words: "We all evolve, develop, grow, and reproduce as multigenomic ecosystems! Regarding reproduction, another impressive example of active immunologic protection of "nonself " refers to pregnancy in placental mammals that emerged about 400 millions of years ago. Similar to "non-self " microbiotas, pregnancy in placental mammals reflects an evolution-driven phenomenon on the basis of innate immunity-controlled tolerance induction to semiallogeneic non-injuring/non-injured "non-self " aiming to ensure reproduction! Altogether, the lesson learned from evolution of how to avoid allograft rejection is clear: prevent allograft injury to induce allotolerance, in other words: create a "transplant holobiont. ". </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25894127</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">2146-8427</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13 Suppl 1</Volume>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation</Title>
<ISOAbbreviation>Exp Clin Transplant</ISOAbbreviation>
</Journal>
<ArticleTitle>How evolution tells us to induce allotolerance.</ArticleTitle>
<Pagination>
<MedlinePgn>46-54</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Modern immunology, in many ways, is based on 3 major paradigms: the clonal selection theory (Medawar, Burnet; 1953/1959), the pattern recognition theory (Janeway; 1989), and the danger/injury theory (Matzinger, Land; 1994). The last theory holds that any cell stress and tissue injury including allograft injury, via induction of damage-associated molecular patterns, induces immunity including alloimmunity leading to allograft rejection. On the other hand, the concept precludes that "non-self " per se induces immunity as proposed by the two former theories. Today, the danger/injury model has been largely accepted by immunologists, as documented by a steadily increasing number of publications. In particular, overwhelming evidence in support of the correctness of the model has come from recent studies on the gut microbiota representing a huge assemblage of "non-self. " Here, harmless noninjurious commensal microbes are protected by innate immunity-based immune tolerance whereas intestinal injury-causing pathogenic microbes are immunology attacked. The ability of the immune system to discriminate between harmless beneficial "non-self " to induce tolerance and harmful life-threatening "non-self " to induce immunity has apparently emerged during evolution: Protection of innate immunity-controlled beneficial "non-self " (eg, as reflected by microbiotas but also by the fetus of placental mammals) as well as immune defense responses to injuring/injured "non-self " (eg, as reflected by plant resistance to biotic and abiotic stress and allograft rejection in mammals) evolved under pressure across the tree of life, that is, in plants, lower and higher invertebrates as well as lower and higher vertebrates. And evolution tells us why the overall existence of protected microbiotas really makes sense: It is the formation of the "holobiont, " - a metaorganism - that is, the host plus all of its associated microorganisms that - in terms of a strong unit of selection in evolution - provides that kind of fitness to all species on earth to successfully live, survive and reproduce. In other words: "We all evolve, develop, grow, and reproduce as multigenomic ecosystems! Regarding reproduction, another impressive example of active immunologic protection of "nonself " refers to pregnancy in placental mammals that emerged about 400 millions of years ago. Similar to "non-self " microbiotas, pregnancy in placental mammals reflects an evolution-driven phenomenon on the basis of innate immunity-controlled tolerance induction to semiallogeneic non-injuring/non-injured "non-self " aiming to ensure reproduction! Altogether, the lesson learned from evolution of how to avoid allograft rejection is clear: prevent allograft injury to induce allotolerance, in other words: create a "transplant holobiont. ". </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Land</LastName>
<ForeName>Walter Gottlieb</ForeName>
<Initials>WG</Initials>
<AffiliationInfo>
<Affiliation>From Molecular ImmunoRheumatology, INSERM, UMR S 1109, LabEx Transplantex, Faculty of Medicine, University of Strasbourg, Strasbourg, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D019531">Lecture</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Turkey</Country>
<MedlineTA>Exp Clin Transplant</MedlineTA>
<NlmUniqueID>101207333</NlmUniqueID>
<ISSNLinking>1304-0855</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006084" MajorTopicYN="N">Graft Rejection</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006085" MajorTopicYN="Y">Graft Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018928" MajorTopicYN="N">Immunity, Mucosal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007422" MajorTopicYN="N">Intestines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018448" MajorTopicYN="N">Models, Immunological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016377" MajorTopicYN="N">Organ Transplantation</DescriptorName>
<QualifierName UI="Q000009" MajorTopicYN="Y">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010920" MajorTopicYN="N">Placenta</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023001" MajorTopicYN="Y">Transplantation Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25894127</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Alsace (région administrative)</li>
<li>Grand Est</li>
</region>
<settlement>
<li>Strasbourg</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Grand Est">
<name sortKey="Land, Walter Gottlieb" sort="Land, Walter Gottlieb" uniqKey="Land W" first="Walter Gottlieb" last="Land">Walter Gottlieb Land</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000177 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000177 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25894127
   |texte=   How evolution tells us to induce allotolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25894127" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020